Symplectic Forms and Surfaces of Negative Square

نویسنده

  • TIAN-JUN LI
چکیده

We introduce an analogue of the inflation technique of LalondeMcDuff, allowing us to obtain new symplectic forms from symplectic surfaces of negative self-intersection in symplectic four-manifolds. We consider the implications of this construction for the symplectic cones of Kähler surfaces, proving along the way a result which can be used to simplify the intersections of distinct pseudoholomorphic curves via a perturbation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A ug 2 00 1 Symplectic genus , minimal genus and diffeomorphisms

In this paper, the symplectic genus for any 2−dimensional class in a 4−manifold admitting a symplectic structure is introduced, and its relation with the minimal genus is studied. It is used to describe which classes in rational and irrational ruled manifolds are realized by connected symplectic surfaces. In particular, we completely determine which classes with square at least −1 in such manif...

متن کامل

The Symplectic Thom Conjecture

In this paper, we demonstrate a relation among Seiberg-Witten invariants which arises from embedded surfaces in four-manifolds whose self-intersection number is negative. These relations, together with Taubes’ basic theorems on the Seiberg-Witten invariants of symplectic manifolds, are then used to prove the Symplectic Thom Conjecture: a symplectic surface in a symplectic four-manifold is genus...

متن کامل

The symplectic Thom conjecture

In this paper, we demonstrate a relation among Seiberg-Witten invariants which arises from embedded surfaces in four-manifolds whose self-intersection number is negative. These relations, together with Taubes’ basic theorems on the Seiberg-Witten invariants of symplectic manifolds, are then used to prove the symplectic Thom conjecture: a symplectic surface in a symplectic fourmanifold is genus-...

متن کامل

Open Books and Configurations of Symplectic Surfaces

We study neighborhoods of configurations of symplectic surfaces in symplectic 4–manifolds. We show that suitably “positive” configurations have neighborhoods with concave boundaries and we explicitly describe open book decompositions of the boundaries supporting the associated negative contact structures. This is used to prove symplectic nonfillability for certain contact 3–manifolds and thus n...

متن کامل

Flow of Symplectic Surfaces

Geometers have been interested in constructing minimal surfaces for long time. One possible way to produce such surfaces is to deform a given surface by its mean curvature vector. More precisely, the surface evolves in the gradient flow of the area functional, and such a flow is the so-called mean curvature flow. A mean curvature flow, however, develops singularity after finite time in general ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006